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Abstract
We show that the one-dimensional spin-1 XY model has an additional SU(2)
symmetry for the open boundary condition and for an artificial one. We can
explain some degeneracies of excitation states which were reported in previous
numerical studies.

PACS numbers: 02.20.−a, 64.60.Fr, 71.10.Jm

In the one-dimensional (1D) spin-1 (S = 1) XXZ model, a quantum phase transition between
the critical-XY and the Haldane phases takes place at the point of the XY model. This fact has
been argued by some authors [1–5]. An important feature is the existence of degeneracies of
excitation states with different total magnetization of Sz-direction M. Alcaraz and Moreo [2]
studied the XXZ model with S = 1, 3/2, 2, 5/2 and 3 numerically, and found the behaviour
of critical exponents. From the critical theory and the function of the critical exponent for the
S = 1 case, it was indicated that the phase boundary between the critical-XY and the Haldane
phases is the XY model point. At this point, they observed degeneracies for the open boundary
case among the first excited states of M = 0 and of M = ±2, and among the third excited
state of M = ±1 and the first excited state of M = ±3. With the periodic boundary condition,
Kitazawa et al [3] studied the quantum phase transition of the 1D S = 1 bond-alternating XXZ
model numerically, and found that there exists a degeneracy among states with M = 0 and
M = ±4 on the line of the XY model. Moreover, Nomura and Kitazawa [5] found that a state
with M = 0 of the 1D S = 1 XY model with the twisted boundary condition has the same
energy as states with M = ±2 of the model with the periodic boundary condition. The authors
of [2–5] argued that the above mentioned degeneracies at the XY model point is evidence for
the phase boundary. Thus, we think that these degeneracies are due to some symmetry of the
1D S = 1 XY model.

In this paper, we show that the 1D S = 1 XY model has an additional SU(2) symmetry for
the open boundary case and for an artificial boundary case, and explain the above mentioned
degeneracies of excitation states.

0305-4470/03/230351+07$30.00 © 2003 IOP Publishing Ltd Printed in the UK L351
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We consider the following 1D S = 1 XY model:

HXY =
L−1∑
j=1

J(j,j+1)

(
Sx

j Sx
j+1 + S

y

j S
y

j+1

)
+ J(L,1)

(
Sx

LSx
1 + S

y

LS
y

1

)

=
L−1∑
j=1

J(j,j+1)

2

(
S+

j S−
j+1 + S−

j S+
j+1

)
+

J(L,1)

2

(
S+

LS−
1 + S−

L S+
1

)
(1)

where Sx
j , S

y

j and Sz
j

(
S±

j = Sx
j ± iSy

j

)
are spin-1 operators at the jth site, L is the system

size, and couplings of the neighbouring sites J(j,j+1) are arbitrarily distributed. Note that
this model does not have the usual SU(2) symmetry relating to the total spin operator
Sa

T = ∑L
j=1 Sa

j (a = x, y, z).
Firstly, let us define the following operators:

s̃±
j = 1

2

(
S±

j

)2
s̃z
j = 1

2Sz
j . (2)

These operators satisfy the commutation relation[
s̃z
j , s̃

±
k

] = ±δjks̃
±
j (3)

and using [(
S+

j

)2
,
(
S−

j

)2] = −8
(
Sz

j

)3
+ 4(2S2 + 2S − 1)Sz (4)

and
(
Sz

j

)3 = Sz
j for S = 1, we also have[
s̃+
j , s̃−

k

] = 2δjks̃
z
j . (5)

Thus operators s̃±
j and s̃z

j form a basis of su(2) algebra. At a single site, we have
1
2

(
s̃+
j s̃−

j + s̃−
j s̃+

j

)
+

(
s̃z
j

)2 = 3
4

(
Sz

j

)2
, and the state with Sz

j = 0 corresponds to spin-0 state
and the states with Sz

j = ±1 correspond to spin-1/2 states for the operator (2). The operator∑
j s̃z

j commutes with the Hamiltonian, but operators
∑

j s̃±
j do not.

Next, we introduce new operators

s±
j = 1

2

(
S±

j

)2
Uj sz

j = 1
2Sz

j

(=s̃z
j

)
(6)

where Uj is the following non-local unitary operator:

U1 = 1 and Uj =
j−1∏
l=1

(
1 − 2

(
Sz

l

)2) = eiπ
∑j−1

l=1 Sz
l for j > 1. (7)

We show that operators (6) obey the commutation relation of su(2), and that the total operators
s±

T = ∑L
j=1 s±

j and sz
T = ∑L

j=1 sz
j commute with the Hamiltonian (1) with the open boundary

condition (J(L,1) = 0). From the commutation relation[(
Sz

j

)2
,
(
S±

j

)2] = 4
(
S±

j

)2(
1 ± Sz

j

) = 0 (8)

(in which the second equality is valid for the S = 1 case), the factor Uj does not affect
the commutativity among the new operators

(
s±
j , sz

j

)
at different sites. Thus, we obtain the

commutation relation of su(2)[
sz
j , s

±
k

] = ±δjks
±
j

[
s+
j , s−

k

] = 2δjks
z
j (9)

and [
sz

T, s±
T

] = ±s±
T

[
s+

T, s−
T

] = 2sz
T. (10)
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We also have the relation between the original spin-1 operator S±
j and Uk as

S±
j Uk =

{−UkS
±
j j < k

UkS
±
j j � k.

(11)

The factor (7) appears in the string order parameter of the Haldane-gap state [1] and relates
to the Jordan–Wigner transformation. From equation (11), we have a Jordan–Wigner-type
transformation from spin-1 operators to spin-1/2 fermions excluding double occupancy

c̃
†
j,↑ = 1√

2
Sz

j S
+
j Uj

(
= 1√

2
S+

j

(
1 − (

Sz
j

)2)
Uj

)

c̃
†
j,↓ = − 1√

2
Sz

jS
−
j Uj

(
= 1√

2
S−

j

(
1 − (

Sz
j

)2)
Uj

) (12)

where c̃
†
j,σ = c

†
j,σ

(
1 − c

†
j,−σ cj,−σ

)
with the usual spin-1/2 fermion operators c

†
j,σ and cj,σ . In

the fermion system, the spin operator is given by equation (2),

c̃
†
j,↑c̃j,↓ = s̃+

j c̃
†
j,↓c̃j,↑ = s̃−

j
1
2

(
c̃
†
j,↑c̃j,↑ − c̃

†
j,↓c̃j,↓

) = s̃z
j (13)

and the number operator is c̃
†
j↑c̃j↑ + c̃

†
j↓c̃j↓ = (

Sz
j

)2
.

Let us see the commutativity of the operator s±
T and the Hamiltonian with the open

boundary condition. From the fact that
[
s±
k , S+

j S−
j+1 +S−

j S+
j+1

] = 0 for k �= j and for k �= j +1,
it is sufficient to see whether[

s+
j , S+

j S−
j+1 + S−

j S+
j+1

]
+

[
s+
j+1, S

+
j S−

j+1 + S−
j S+

j+1

]
(14)

is zero or not. For the first commutation relation, we have[
s+
j , S+

j S−
j+1 + S−

j S+
j+1

] = 1
2S+

j+1

[(
S+

j

)2
, S−

j

]
Uj = S+

j+1S
+
j

(
1 + 2Sz

j

)
Uj = S+

j+1S
+
j Uj+1 (15)

where we used an identity

S+
j

(
1 + 2Sz

j

) = S+
j

[
1 − 2

(
Sz

j

)2]
for the spin-1 operators. We calculate the second commutation relation of (14) as[
s+
j+1, S

+
j S−

j+1 + S−
j S+

j+1

] = [
s+
j+1, S

+
j S−

j+1

]
= − 1

2S+
j Uj+1

{(
S+

j+1

)2
S−

j+1 + S−
j+1

(
S+

j+1

)2} = −S+
j+1S

+
j Uj+1 (16)

where we used relation (11) and identities for the spin-1 operator
(
S+

j

)3 = 0 and
(
S+

j+1

)2
S−

j+1 + S−
j+1

(
S+

j+1

)2 = 2S+
j+1.

Hence from equations (15) and (16) we find that (14) is zero, and that the Hamiltonian (1)
and the new operators s±

T and sz
T commute for the open boundary case. This means that the

Hamiltonian is invariant under an SU(2) transformation generated by the operators s±
T and sz

T.
From this symmetry, there can exist degeneracies between states with Sz

T = M and M − 2.
When |E,M〉 is an eigenstate of the Hamiltonian with an eigenvalue E and of Sz

T with an
eigenvalue M,

|E,M − 2〉 = 1

N
s−

T |E,M〉

where N = √
(s + M/2)(s − M/2 + 1) is a normalization factor with the length of the

‘spin’ s for the operators s±
T and sz

T is a degenerate eigenstate of the Hamiltonian with an
eigenvalue M − 2 of Sz

T (if s−
T |E,M〉 exists). This type of degeneracy was observed in [2].
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When interactions J(j,j+1) satisfy the condition J(j,j+1) = J(L−j,L−j+1), the system is invariant
under the space inversion PS

x,y,z

j P−1 = S
x,y,z

L−j+1. From

Ps±
j P−1 = 1

2

(
S±

L−j+1

)2
L∏

l=L−j+2

(
1 − 2

(
Sz

j

)2)

= 1

2

(
S±

L−j+1

)2(
1 − 2

(
Sz

L−j+1

)2)
UL−j+1

L∏
l=1

(
1 − 2

(
Sz

l

)2)

= −1

2

(
S±

L−j+1

)2
UL−j+1 eiπSz

T = −s±
L−j+1 eiπSz

T (17)

we obtain

P |E,M − 2〉 = −eiπM 1

N
s−

T P |E,M〉.
Hence when M is odd, the degenerate states |E,M〉 and |E,M − 2〉 have the same eigenvalue
of P (= ±), but when M is even, the two states have different eigenvalues.

For the periodic boundary case, the boundary term
J(L,1)

2

[
S+

LS−
1 + S−

L S+
1

]
does not commute with s±

T , and the model does not have an SU(2) symmetry. In order to find
an SU(2) symmetric boundary term, let us consider the following one:

Hboundary = 1
2J(L,1)

(
S+

LS−
1 e−iθSz

T + S−
L S+

1 eiθSz
T
)

(18)

where θ is a real number. The commutation relations between S+
LS−

1 e−iθSz
T + S−

L S+
1 eiθSz

T and
s+
j are given by[
s+

1 , S+
LS−

1 e−iθSz
T + S−

L S+
1 eiθSz

T
] = 1

2S+
L

{(
S+

1

)2
S−

1 − e−2iθS−
1

(
S+

1

)2}
e−iθSz

T
]

× [
s+
j , S+

LS−
1 e−iθSz

T + S−
L S+

1 eiθSz
T
]

= −(1 + e−2iθ )S+
LS−

1 s+
j e−iθSz

T − (1 + e2iθ )S−
L S+

1 s+
j eiθSz

T for 1 < j < L

and [
s+
L, S+

LS−
1 e−iθSz

T + S−
L S+

1 eiθSz
T
] = − 1

2

{(
S+

L

)2
S−

L + e2iθS−
L

(
S+

L

)2}
S+

1 eiθSz
TUL

where we used e±iθSz
j

(
S+

j

)2 = e±2iθ
(
S+

j

)2
e±iθSz

j . If we choose θ = ±π/2, we have[
s+

1 , S+
LS−

1 e∓i π
2 Sz

T + S−
L S+

1 e±i π
2 Sz

T
] = 1

2S+
L

{(
S+

1

)2
S−

1 + S−
1

(
S+

1

)2}
e∓i π

2 Sz
T = S+

LS+
1 e∓i π

2 Sz
T[

s+
j , S+

LS−
1 e∓i π

2 Sz
T + S−

L S+
1 e±i π

2 Sz
T
] = 0 for 1 < j < L

and[
s+
L, S+

LS−
1 e∓i π

2 Sz
T + S−

L S+
1 e±i π

2 Sz
T
] = − 1

2

{(
S+

L

)2
S−

L − S−
L

(
S+

L

)2}
S+

1 e±i π
2 Sz

TUL

= −S+
LS+

1 e±i π
2 Sz

T

L∏
l=1

{
1 − 2

(
Sz

l

)2}

= −S+
LS+

1 e∓i π
2 Sz

T .

Thus, the boundary term (18) commutes with s±
T (and sz

T) for θ = ±π/2, and accordingly the
Hamiltonian of the form

H =
L−1∑
j=1

J(j,j+1)

2

[
S+

j S−
j+1 + S−

j S+
j+1

]
+

J(L,1)

2

[
S+

LS−
1 e∓i π

2 Sz
T + S−

L S+
1 e±i π

2 Sz
T
]

(19)

commutes with s±
T and sz

T, and has an SU(2) symmetry.
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From the Hamiltonian with the artificial boundary term (19), we can explain the existence
of degenerate states for the periodic and the twisted boundary conditions in [3–5]. Let us
define

H(±) =
L−1∑
j=1

J(j,j+1)

2

[
S+

j S−
j+1 + S−

j S+
j+1

] ± J(L,1)

2

[
S+

LS−
1 + S−

L S+
1

]

and

H
(±)
1 =

L−1∑
j=1

J(j,j+1)

2

[
S+

j S−
j+1 + S−

j S+
j+1

] ± J(L,1)

2

[
S+

LS−
1 e∓i π

2 Sz
T + S−

L S+
1 e±i π

2 Sz
T
]
.

We regard H(+) as the original Hamiltonian. If |E, 4N〉 is an eigenstate of the Hamiltonian
H(+) (H (−)) with an eigenvalue E and of Sz

T with an eigenvalue 4N (N is an integer), it is also
an eigenstate of H

(+)

1

(
H

(−)

1

)
because e±i π

2 Sz
T |E, 4N〉 = |E, 4N〉. Then if the state

|E, 4N − 2〉 = 1

N
s−

T |E, 4N〉

(whereN = √
(s + 2N)(s − 2N + 1) is a normalization factor with a positive integer s) exists,

it is a degenerate eigenstate of the Hamiltonian H
(+)

1

(
H

(−)

1

)
. Since the eigenvalue of Sz

T is
4N − 2 and e±i π

2 Sz
T |E, 4N − 2〉 = −|E, 4N − 2〉, this state is not an eigenstate of H(+) (H (−))

but of H(−) (H (+)) with an eigenvalue E.
Similarly, if |E, 4N + 2〉 is an eigenstate of H(+) (H (−)) with an eigenvalue E and of Sz

T

with an eigenvalue 4N + 2, it is an eigenstate of H
(−)

1

(
H

(+)

1

)
. Then if the state

|E, 4N〉 = 1

N
s−

T |E, 4N + 2〉

(where N = √
(s + 2N + 1)(s − 2N) with a positive integer s) exists, it is a degenerate

eigenstate of the Hamiltonian H
(−)

1

(
H

(+)

1

)
. Since the eigenvalue of Sz

T is 4N , this state is not
an eigenstate of H(+) (H (−)) but of H(−) (H (+)) with an eigenvalue E. Thus, an eigenstate
|E, 2N〉 of the model with the periodic boundary condition (H (+)) can have the same energy
as the state |E, 2N ± 2〉 of the model with the twisted boundary condition (H (−)). Let us
consider the case that the system is invariant under the space inversion P. From equation (17),
we can say that the above states |E, 2N〉 (an eigenstate of H(+)) and |E, 2N ± 2〉 (of H(−))
have different eigenvalues of P (e.g. if |E, 2N〉 has P = +, then |E, 2N ± 2〉 have P = −).
Examples of this degeneracy were reported in [5].

Although the model with the periodic boundary condition (H (+)) does not have the SU(2)
symmetry, there exist degenerate states |E, 2N〉 and

|E, 2N − 4〉 = 1

N
(s−

T )2|E, 2N〉
with even eigenvalues of Sz

T (and with integer eigenvalues of sz
T). When the system is invariant

under the space inversion P, from equation (17) the two states |E, 2N〉 and |E, 2N − 4〉 have
the same eigenvalue of P. When the couplings are uniform J(1,2) = J(2,3) = · · · = J(L,1), the
system is invariant under the translation T S

x,y,z

j T −1 = S
x,y,z

j+1 . In this case, from

T
(
s±

T

)2
T −1 = (

s±
T

)2
+ 2

L∑
j=2

s±
1 s±

j

(
eiπSz

T − 1
)

(20)

the two degenerate states |E, 2N〉 and |E, 2N − 4〉 have the same eigenvalue of T (i.e. wave
number). This type of degeneracy was found in [3].
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From equation (8), the following term also commutes with s±
T and sz

T:

HSia =
L∑

j=1

Dz
j

(
Sz

j

)2
. (21)

Hence the Hamiltonians of the form HXY + HSia with the open boundary condition and with
an artificial boundary condition also have an SU(2) symmetry, and the above argument can
also be applied. The phase diagram of the 1D S = 1 XXZ model with single ion anisotropy

H =
∑

j

(
Sx

j Sx
j+1 + S

y

j S
y

j+1 + �Sz
jS

z
j+1

)
+ D

∑
j

(
Sz

j

)2
(22)

has been studied [1, 6–10]. The phase boundaries between the XY1 and the Haldane phases
and between the XY2 and the Néel phases [8, 9] are on the line � = 0 [1, 10], and this reflects
the symmetry.

Considering that the 1D S = 1 model relates to the S = 1/2 two-leg ladder model with
strong ferromagnetic inter-chain interactions, we can apply the same analysis for the S = 1/2
model [11]

H =
L−1∑
j=1

J(j,j+1)

(
Sx

1,j S
x
1,j+1 + S

y

1,j S
y

1,j+1 + Sx
2,j S

x
2,j+1 + S

y

2,j S
y

2,j+1

)

+
L−1∑
j=1

J[j,j+1]
(
Sx

1,j S
x
2,j+1 + S

y

1,j S
y

2,j+1 + Sx
2,j S

x
1,j+1 + S

y

2,j S
y

1,j+1

)

+
L∑

j=1

Jxy,j

{
Sx

1,j S
x
2,j + S

y

1,j S
y

2,j

}
+

L∑
j=1

Jz,j S
z
1,j S

z
2,j

+
J(L,1)

2

(
S+

1,LS−
1,1 e∓i π

2 Sz
T + S−

1,LS+
1,1 e±i π

2 Sz
T
)

+
J(L,1)

2

(
S+

2,LS−
2,1 e∓i π

2 Sz
T + S−

2,LS+
2,1 e±i π

2 Sz
T
)

+
J[L,1]

2

(
S+

1,LS−
2,1 e∓i π

2 Sz
T + S−

1,LS+
2,1 e±i π

2 Sz
T
)

+
J[L,1]

2

(
S+

2,LS−
1,1 e∓i π

2 Sz
T + S−

2,LS+
1,1 e±i π

2 Sz
T
)

(23)

where Sa
n,j (a = x, y, z) is the spin-1/2 operator at the jth site of the leg n = 1, 2, and we define

Sz
T = ∑L

j=1

(
Sz

1,j + Sz
2,j

)
. The intra- and the inter-chain couplings J(j,j+1), J[j,j+1], Jxy,j and

Jz,j are arbitrary, but the model needs the invariance under the exchange of the leg Sa
1,j ↔ Sa

2,j .
In this case, we define the operators

s±
j = S±

1,j S
±
2,j

j−1∏
l=1

(−4Sz
1,lS

z
2,l

)
sz
j = 1

2

(
Sz

1,j + Sz
2,j

)
(24)

which satisfy equation (9). The Hamiltonian (23) is invariant under an SU(2) transformation
generated by the total operators s±

T = ∑L
j=1 s±

j and sz
T = ∑L

j=1 sz
j . With the Jordan–Wigner

transformation, we can see that the operators (24) relate to the pseudospin operators of the
Hubbard model [12–14].

In summary, introducing new operators (6), we considered an additional SU(2) symmetry
of the one-dimensional spin-1 XY model. Interactions of the model were assumed for nearest
neighbour spins. But the strength of interactions can be arbitrarily distributed, so that the
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argument can be applied for the random coupling case. The existence of the SU(2) symmetry
depends on the boundary term. The symmetry exists for the open boundary case, but does not
exist for the periodic boundary case. We found an SU(2) symmetric boundary term depending
on the operator Sz

T. Considering the SU(2) symmetric cases, we explained degeneracies of
excitation states which were reported in previous numerical studies.
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